Run Examples ============= Start up --------------- Follow these simple steps to quickly get started: 1. **Installation:** Install the toolbox using the provided *installation instructions* or simply type the following command in your terminal: .. code-block:: bash pip install MJOcast 2. **Configuration:** Customize your forecasting experience by configuring the toolbox: 2.1. *Manual Configuration:* Edit the YAML configuration file directly to define your forecast parameters, data paths, and other settings. 2.2. *YAML Generator Tool:* Alternatively, use the provided YAML generator tool in the preprocessor Jupyter Notebook for a user-friendly configuration process. 3. **Quick Start Usage:** Begin forecasting with ease: Import the necessary modules: .. code-block:: python import MJOcast.utils.ProcessForecasts as ProFo import MJOcast.utils.ProcessOBS as ProObs Load the YAML configuration file: .. code-block:: python yaml_file_path = './settings.yaml' Create Observational MJO and EOFs [from either user specified data or provide ERA5]: .. code-block:: python MJO_obs = ProObs.MJOobsProcessor(yaml_file_path) OBS_DS, eof_list, pcs, MJO_fobs, eof_dict = MJO_obs.make_observed_MJO() Generate Hindcast .nc Files for each forecast: .. code-block:: python MJO_for = ProFo.MJOforecaster(yaml_file_path, MJO_obs.eof_dict, MJO_obs.MJO_fobs) DS_CESM_for, OLR_cesm_anom_filtered, U200_cesm_anom_filtered, U850_cesm_anom_filtered = MJO_for.create_forecasts(num_files=1) 4. **Documentation:** For in-depth guidance, explore the code API documentation. It provides detailed usage instructions, function explanations, and examples. Follow these steps to make the most of MJOforecaster in your projects. Happy forecasting!